Apple Leaf Disease Detection and Classification Using CNN Models
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-19-2719-5_26
Reference24 articles.
1. Kundu, N., et al.: IoT and interpretable machine learning based framework for disease prediction in pearl millet. Sensors 21(16), 5386 (2021)
2. Kundu, N., Rani, G., Dhaka, V.S.: A comparative analysis of deep learning models applied for disease classification in bell pepper. In: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 243–247 (2020). https://doi.org/10.1109/PDGC50313.2020.9315821
3. Dhaka, V.S., et al.: A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 21(14), 4749 (2021)
4. Studies in Big Data;D Sinwar,2020
5. Agarwal, M., Rani, G., Agarwal, S., Dhaka, V.: Sequential model for digital image contrast enhancement. Recent Adv. Comput. Sci. Commun. (2020). https://doi.org/10.2174/2666255813999200717231942
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transfer Learning of VGG19 for the Classification of Apple Leaf Diseases;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04
2. Advanced Predictive Models for Decisive Stage Detection in Apple Canker Disease;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29
3. Apple Leaf Disease Detection using DenseNet121 Transfer Learning Model;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01
4. Role of Internet of Things and Deep Learning Techniques in Plant Disease Detection and Classification: A Focused Review;Sensors;2023-09-14
5. An intelligent flower classification framework: optimal hybrid flower pattern extractor with adaptive dynamic ensemble transfer learning-based convolutional neural network;The Imaging Science Journal;2023-06-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3