1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
2. Balcan, M.F., Dick, T., Liang, Y., Mou, W., Zhang, H.: Differentially private clustering in high-dimensional Euclidean spaces. In: International Conference on Machine Learning, pp. 322–331. PMLR (2017)
3. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SULQ framework. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 128–138 (2005)
4. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D., Wang, T.: Privacy at scale: local differential privacy in practice. In: Proceedings of the 2018 International Conference on Management of Data, pp. 1655–1658 (2018)
5. Dennis, D.K., Li, T., Smith, V.: Heterogeneity for the win: one-shot federated clustering. In: International Conference on Machine Learning, pp. 2611–2620. PMLR (2021)