Improve the Accuracy of Heart Disease Predictions Using Machine Learning and Feature Selection Techniques

Author:

Ali Abdelmegeid Amin,Hassan Hassan Shaban,Anwar Eman M.ORCID

Publisher

Springer Singapore

Reference27 articles.

1. World Health Organization: World Health Organization (2019). http://www.who.int/cardiovasculardiseases/en

2. Blair, S., et al.: Commentary on Wang Y et al. “an overview of non-exercise estimated cardiorespiratory fitness: estimation equations, cross-validation and application”. J. Sci. Sport Exerc. 1(1), 94–95 (2019). https://doi.org/10.1007/s42978-019-0001-z

3. Vanisree, K., Singaraju, J.: Decision support system for congenital heart disease diagnosis based on signs and symptoms using neural networks. Int. J. Comput. Appl. 19(6), 6–12 (2011)

4. Al-Janabi, M.I., Qutqut, M.H., Hijjawi, M.: Machine learning classification techniques for heart disease prediction: a review. Int. J. Eng. Technol. 7(4), 5373–5379 (2018)

5. Gandhi, M.: Prediction in heart disease using techniques of data mining. In: International Conference on Futuristic Trend in Computational Analysis and Knowledge Management (ABLAZE-2015) (2015)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiovascular Disease Prediction Using Langchain;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. Cardiovascular Disease Prediction using Patient History and Real Time Monitoring;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

3. Heart Problem Prediction Using Machine Learning Technique;Lecture Notes in Electrical Engineering;2024

4. Computer-Aided Heart Disease Diagnosis Using Recursive Rule Extraction Algorithms from Neural Networks;International Journal of Computational Intelligence and Applications;2022-06

5. Heart Disease Prediction—An Online Consultation Software;Algorithms for Intelligent Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3