Integrable Systems Related to Matrix LR Transformations

Author:

Iwasaki Masashi,Shinjo Masato,Yamamoto Yusaku,Fukuda Akiko,Watanabe Sennosuke,Sekiguchi Masaki,Ishiwata Emiko

Abstract

AbstractThe discrete Toda (dToda) equation, which is a representative integrable system, is the recursion formula of the well-known quotient-difference algorithm for computing the eigenvalues of tridiagonal matrices. In other words, the dToda equation is related to the LR transformations of tridiagonal matrices. In this chapter, by extending the application of LR transformations from tridiagonal to Hessenberg matrices, we capture the discrete hungry Toda (dhToda) and discrete relativistic Toda (drToda) equations, which are extensions of the dToda equation from the perspective of LR transformations. From the LR perspective, we identify further extensions of the dhToda equations, and clarify the relationship between the drToda equation and the discrete hungry Lotka–Volterra system. We also demonstrate that ultradiscrete versions of discrete integrable systems related to the LR transformations can be used to compute the eigenvalues of matrices over min-plus algebra, as can discrete integrable systems over linear algebra. These ultradiscrete integrable systems are expected to be equations of motion for box-and-ball systems (BBSs), which are cellular automata that describe mobility phenomena. Thus, we present an example of utilizing the LR perspective to design a new BBS.

Publisher

Springer Nature Singapore

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3