1. Magnus, M. C., Wilcox, A. J., Morken, N. H., Weinberg, C. R., & Håberg, S. E. (2019). Role of maternal age and pregnancy history in risk of miscarriage: Prospective register based study. BMJ (Online), 364, 1–8.
2. Bruno, V., D’Orazio, M., Ticconi, C., Abundo, P., Riccio, S., Martinelli, E., Rosato, N., Piccione, E., Zupi, E., & Pietropolli, A. (2020). Machine learning (ML) based-method applied in recurrent pregnancy loss (RPL) patients diagnostic work-up: A potential innovation in common clinical practice. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-64512-4
3. Liu, L., Jiao, Y., Li, X., Ouyang, Y., & Shi, D. (2020). Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Computer Methods and Programs in Biomedicine, 196, 105624.https://doi.org/10.1016/j.cmpb.2020.105624
4. Pruthi, J. (2018). A walkthrough of prediction for pregnancy complications using machine learning: A retrospective. In 4th International Conference on Computers and Management (ICCM) (pp. 338–343).
5. Asri, H., Mousannif, H., & Moatassime, H. A. (2017). Real-time miscarriage prediction with SPARK. Procedia Computer Science, 113, 423–428. https://doi.org/10.1016/j.procs.2017.08.272