Publisher
Springer Nature Singapore
Reference15 articles.
1. Mishra M, Saari J, Galar D, Leturiondo U (2014) Hybrid models for rotating machinery diagnosis and prognosis: estimation of remaining useful life. Luleå tekniska universitet
2. Calabrese M, Cimmino M, Manfrin M, Fiume F, Kapetis D, Mengoni M, Ceccacci S, Frontoni E, Paolanti M, Carrotta A, Toscano G (2019) An event-based machine learning framework for predictive maintenance in Industry 4.0. In: Proceedings of the ASME 2019 international design engineering technical conferences and computers and information in engineering conference
3. Li X, Duan F, Mba D, Bennett I (2018) Rotating machine prognostics using system-level models. Lect Notes Mech Eng 123–141
4. Souza RM, Nascimento EGS, Miranda UA, Silva WJD, Lepikson HA (2021) Deep learning for diagnosis and classification of faults in industrial rotating machinery. Comput Ind Eng 153
5. Orrù PF, Zoccheddu A, Sassu L, Mattia C, Cozza R, Arena S (2020) Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the Oil and Gas Industry. Sustainability 12:4776