1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626–688 (2015). https://doi.org/10.1007/s10618-014-0365-y
2. Belilovsky, E., Eickenberg, M., Oyallon, E.: Greedy layerwise learning can scale to ImageNet. In: International Conference on Machine Learning, pp. 583–593. PMLR (2019)
3. Boniol, P., Palpanas, T., Meftah, M., Remy, E.: GraphAn: graph-based subsequence anomaly detection. Proc. VLDB Endow. 13(12), 2941–2944 (2020)
4. Chen, D., et al.: Topology-imbalance learning for semi-supervised node classification. In: Advances in Neural Information Processing Systems, vol. 34, pp. 29885–29897 (2021)
5. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)