Author:
Upendra Kumar P.,Lakshmana Rao K.,Kishore T. S.
Publisher
Springer Nature Singapore
Reference12 articles.
1. CEA, Load generation balance report, New Delhi, India, 2021
2. Peiris AT, Jayasinghe J, Rathnayake U () Forecasting wind power generation using artificial neural network: “Pawan Danawi”—a case study from Sri Lanka. J Electr Comput Eng
3. Buturache AN, Stancu S (2021) Wind energy prediction using machine learning. Low Carbon Economy 12:1–21
4. Singh U, Rizwan M, Alaraj M, Alsaidan I (2021) A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments. Energies 14:5196
5. Xiaoming W, Yuguang X, Bo G, Yuanjie Z, Fan C (2018) Analysis of factors affecting wind farm output power. In: 2nd IEEE conference on energy internet and energy system integration