1. Ekta, G., Ritika, J., Alankrit, G., Uma, T.: Regression analysis of COVID-19 using machine learning algorithms. In: Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020). IEEE Xplore Part Number: CFP20V90-ART. ISBN: 978-1-7281-5461-9
2. Muhammad, L.J., et al.: Predictive data mining models for novel coronavirus (COVID-19) infected patients’ recovery. SN Comput. Sci. 1(4), 1–7 (2020). Lagzian, S., et al.: Robust watermarking scheme based on RDWT-SVD: embedding data in all sub bands. 978-1-4244-9834-5/11. ©2011 IEEE
3. Rustam, F., et al.: COVID-19 future forecasting using supervised machine learning models. IEEE Access 8, 101489–101499 (2020). https://doi.org/10.1109/ACCESS.2020.2997311
4. Mandayam, A.U., Rakshith, A.C., Siddesha, S., Niranjan, S.K.: Prediction of Covid-19 pandemic based on regression. In: 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 1–5. Bangalore, India (2020). https://doi.org/10.1109/ICRCICN50933.2020.9296175
5. Casiraghi, E., et al.: Explainable machine learning for early assessment of COVID-19 risk prediction in emergency departments. IEEE Access 8, 196299–196325 (2020). https://doi.org/10.1109/ACCESS.2020.3034032