Ensemble of Deep Learning Approach for the Feature Selection from High-Dimensional Microarray Data
Publisher
Springer Singapore
Reference20 articles.
1. Wahid, A., Khan, D.M., Iqbal, N., Khan, S.A., Ali, A., Khan, M., Khan, Z.: Feature selection and classification for gene expression data using novel correlation based overlapping score method via chou’s 5-steps rule. Chemometr. Intell. Lab. Syst. 199, 103958 (2020) 2. Ghosh, M., Begum, S., Sarkar, R., Chakraborty, D., Maulik, U.: Recursive memetic algorithm for gene selection in microarray data. Exp. Syst. Appl. 116, 172–185 (2019) 3. Kilicarslan, S., Adem, K., Celik, M.: Diagnosis and classification of cancer using hybrid model based on relieff and convolutional neural network. Med. Hypotheses 137, 109577 (2020) 4. De Souza, J.T., De Francisco, A.C., De Macedo, D.C.: Dimensionality reduction in gene expression data sets. IEEE Access 7, 61136–61144 (2019) 5. Chan, W.H., Mohamad, M.S., Deris, S., Zaki, N., Kasim, S., Omatu, S., Corchado, J.M., Al Ashwal, H.: Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Comput. Biol. Med. 77, 102-115 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|