Author:
Yang Luming,Zeng Yingming,Fu Shaojing,Luo Yuchuan
Reference18 articles.
1. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges. IEEE Trans. Netw. Service Manag. 16(2), 445–458 (2019)
2. Ameigeiras, P., Ramos-Munoz, J.J., Navarro-Ortiz, J., Lopez-Soler, J.M.: Analysis and modelling of youtube traffic. Trans. Emerg. Telecommun. Technol. 23(4), 360–377 (2012)
3. Anderson, B., McGrew, D.: Identifying encrypted malware traffic with contextual flow data. In: Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. pp. 35–46 (2016)
4. Anderson, B., Paul, S., McGrew, D.: Deciphering malware’s use of tls (without decryption). J. Comput. Virol. Hacking Tech. 14(3), 195–211 (2018)
5. Bagaria, S., Balaji, R., Bindhumadhava, B.: Detecting malignant tls servers using machine learning techniques. arXiv preprint
arXiv:1705.09044
(2017)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EVS2vec: A Low-dimensional Embedding Method for Encrypted Video Stream Analysis;2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON);2023-09-11
2. A Clustering Method of Encrypted Video Traffic Based on Levenshtein Distance;2021 17th International Conference on Mobility, Sensing and Networking (MSN);2021-12