Author:
Khetarpal Poras,Nagpal Neelu,Kumar Mahesh,Lakshmi D.,Kassarwani Neelam
Publisher
Springer Nature Singapore
Reference24 articles.
1. Alhelou HH, Parthasarathy H, Nagpal N, Agarwal V, Nagpal H, Siano P (2022) Decentralized stochastic disturbance observer-based optimal frequency control method for interconnected power systems with high renewable shares. IEEE Trans Ind Inform 18(5):3180–3192. https://doi.org/10.1109/TII.2021.3107396
2. Nilakanta Singh K, Robindro Singh K (2021) A review on deep learning models for short-term load forecasting. In: Choudhary A, Agrawal AP, Logeswaran R, Unhelkar B (eds) Applications of artificial intelligence and machine learning. Lecture notes in electrical engineering, vol 778. Springer, Singapore. https://doi.org/10.1007/978-981-16-3067-5-53
3. Sadaei HJ, de-Lima e-Silva PC, Guimarães FG, Hisyam LM (2019) Short-term load forecasting by using a combined method of convolution neural networks and fuzzy time series. Energy 175:365–377. ISSN 0360-5442
4. Saravanan S, Kannan S, Thangaraj C (2012) Forecasting India’s electricity demand using artificial neural network. In: IEEE-international conference on advances in engineering, science and management (ICAESM-2012), Tamil Nadu, pp 79–83
5. Taylor JW, McSharry PE (2007) Short-term load forecasting methods: an evaluation based on European data. IEEE Trans Power Syst 22(4):2213–2219