Author:
Cao Weinian,Rao Shengxiang,Luo Lijun,Zhang Huijuan,Yin Changqing
Publisher
Springer Nature Singapore
Reference20 articles.
1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
2. Contributors, M.: MMSegmentation: Openmmlab Semantic Segmentation Toolbox and Benchmark (2020). https://github.com/open-mmlab/mmsegmentation
3. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, pp. 179–187. Springer (2016). https://doi.org/10.1007/978-3-319-46976-8_19
4. Guo, M.H., Lu, C.Z., Hou, Q., Liu, Z., Cheng, M.M., Hu, S.M.: Segnext: Rethinking Convolutional Attention Design for Semantic Segmentation. arXiv preprint arXiv:2209.08575 (2022)
5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)