Machine Learning and Neural Network Models for Customer Churn Prediction in Banking and Telecom Sectors
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-7389-4_23
Reference14 articles.
1. H. Jain, G. Yadav, R. Manoov, Churn prediction and retention in banking, telecom and IT sectors using machine learning techniques, in ed. by S. Patnaik, X.S. Yang, I. Sethi. Advances in Machine Learning and Computational Intelligence. Algorithms for Intelligent Systems (Springer, Singapore, 2021). https://doi.org/10.1007/978-981-15-5243-4_12
2. S. Osowski, L. Sierenski, Prediction of customer status in corporate banking using neural networks, in 2020 International Joint Conference on Neural Networks (IJCNN) (2020). https://doi.org/10.1109/ijcnn48605.2020.9206693
3. K. Alkhatib, S. Abualigah, Predictive model for cutting customers migration from banks: based on machine learning classification algorithms, in 2020 11th International Conference on Information and Communication Systems (ICICS) (2020). https://doi.org/10.1109/icics49469.2020.239544
4. A.K. Ahmad, A. Jafar, K. Aljoumaa, Customer churn prediction in telecom using machine learning in big data platform. J. Big Data 6, 28 (2019). https://doi.org/10.1186/s40537-019-0191-6
5. K.G.M. Karvana, S. Yazid, A. Syalim, P. Mursanto, Customer churn analysis and prediction using data mining models in banking industry, in 2019 International Workshop on Big Data and Information Security (IWBIS) (2019). https://doi.org/10.1109/iwbis.2019.8935884
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries;Biomimetics;2023-12-19
2. Remora Optimization with Machine Learning Driven Churn Prediction for Business Improvement;2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2023-01-05
3. Analysis of ensemble classifiers for bank churn prediction;2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2022-11-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3