PSO-NN-Based Hybrid Model for Long-Term Wind Speed Prediction: A Study on 67 Cities of India
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-13-1822-1_29
Reference20 articles.
1. Indian Wind Energy Association, http://www.inwea.org/ . Accessed 10 Nov 2017
2. Azad, H.B., Mekhilef, S., Ganapathy, V.G.: Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Trans. Sustain. Energy 5(2), 546–553 (2014)
3. Brkaa, A., Al-Abdeli, Y.M., Kothapalli, G.: Influence of neural network training parameters on short-term wind forecasting. Int. J. Sustain. Energy (2014)
4. Huang, C.-M., Kuo, C.-J., Huang, Y.-C.: Short-term wind power forecasting and uncertainty analysis using a hybrid intelligent method. IET Renew. Power Gener. 11(5), 678–687 (2017)
5. Haque, A.U., Mandal, P., Meng, J., Negnevitsky, M.: Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int. J. Sustain. Energy, 34(1), 38–51 (2015)
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Editorial: Renewable Power for Sustainable Growth;Lecture Notes in Electrical Engineering;2024
2. Data Resource Library for Renewable Energy Prediction/Forecasting;Lecture Notes in Electrical Engineering;2024
3. An analysis of wind characteristics of Kolkata airport and prediction of wind speed and direction using a new machine learning technique;2023-02-22
4. Short Term Wind Power Prediction using Feedforward Neural Network (FNN) trained by a Novel Sine-Cosine fused Chimp Optimization Algorithm (SChoA);2022 5th International Conference on Energy Conservation and Efficiency (ICECE);2022-03-16
5. Intelligent Approach-Based Maximum Power Point Tracking for Renewable Energy System: A Review;Lecture Notes in Electrical Engineering;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3