Publisher
Springer Nature Singapore
Reference31 articles.
1. Ancuti C, Ancuti CO, De Vleeschouwer C (2016) D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE international conference on image processing (ICIP), pp 2226–2230. https://doi.org/10.1109/ICIP.2016.7532754
2. Bengio Y, Lecun Y (1997) Convolutional networks for images, speech, and time-series
3. Bharath Raj N, Venketeswaran N (2018) Single image haze removal using a generative adversarial network. arXiv e-prints arXiv:1810.09479
4. Bidwe RV, Mishra S, Patil S, Shaw K, Vora DR, Kotecha K, Zope B (2022) Deep learning approaches for video compression: a bibliometric analysis. Big Data Cogn Comput 6(2). https://doi.org/10.3390/bdcc6020044, https://www.mdpi.com/2504-2289/6/2/44
5. Bidwe S, Kale G, Bidwe R (2022) Traffic monitoring system for smart city based on traffic density estimation. Indian J Computer Sci Engg 13(5):1388–1400