The Correction Method of Visibility Forecasts Based on the Machine Learning
Author:
Xie Chao,Ma Xuekuan
Publisher
Springer Singapore
Reference15 articles.
1. Zhang, Z.Y., Wong, M.S.: Evaluation of the representativeness of ground-based visibility for analysis the spatial and temporal variability of aerosol optical thickness in China. In: Geoscience & Remote Sensing Symposium. IEEE (2016) 2. Won, K.K., Kim, Y.J.: Characteristics of visibility-impairing aerosol observed during the routine monitoring periods in Gwangju, Korea. Atmos. Environ. 193, 40–56 (2018). S1352231018305788 3. Han, X., Zhang, M., Tao, J., Wang, L., Gao, J., Wang, S., Chai, F.: Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-CMAQ. Atmos. Environ. 72(Complete), 177–191 (2013) 4. Borrego, C., Monteiro, A., Pay, M.T., et al.: How bias-correction can improve air quality forecasts over Portugal. Atmos. Environ. 45(37), 6629–6641 (2011) 5. Crooks, J.L.: Simultaneous statistical bias correction of multiple PM2.5 species from a regional photochemical grid model. Atmos. Environ. 95, 126–141 (2014)
|
|