A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge

Author:

Yasuda Masaya

Abstract

AbstractRecently, lattice-based cryptography has received attention as a candidate of post-quantum cryptography (PQC). The essential security of lattice-based cryptography is based on the hardness of classical lattice problems such as the shortest vector problem (SVP) and the closest vector problem (CVP). A number of algorithms have been proposed for solving SVP exactly or approximately, and most of them are useful also for solving CVP. In this paper, we give a survey of typical algorithms for solving SVP from a mathematical point of view. We also present recent strategies for solving the Darmstadt SVP challenge in dimensions higher than 150.

Publisher

Springer Singapore

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lattice basis reduction techniques;Multimedia Tools and Applications;2024-02-01

2. Experimental Analysis of Integer Factorization Methods Using Lattices;Lecture Notes in Computer Science;2024

3. A Survey of Algorithms for Addressing the Shortest Vector Problem (SVP);Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Structured $$(\min ,+)$$-convolution and its applications for the shortest/closest vector and nonlinear knapsack problems;Optimization Letters;2023-05-27

5. Development and analysis of massive parallelization of a lattice basis reduction algorithm;Japan Journal of Industrial and Applied Mathematics;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3