Automatic Malware Detection Using Deep Learning Based on Static Analysis
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-10-6385-5_42
Reference18 articles.
1. Gonzalez, L.E., Vazquez, R.A.: Malware classification using Euclide - an distance and artificial neural networks. In: 2013 12th Mexican International Conference on Artificial Intelligence (MICAI), pp. 103–108. IEEE (2013)
2. Zhong, Y., Yamaki, H., Takakura, H.: A malware classification method based on similarity of function structure. In: 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet (SAINT), pp. 256–261. IEEE (2012)
3. Tsyganok, K., Tumoyan, E., Babenko, L., et al.: Classification of poly-morphic and metamorphic malware samples based on their behavior. In: Proceedings of 5th International Conference on Security of Information and Networks, pp. 111–116. ACM (2012)
4. Sahu, M.K., Ahirwar, M., Shukla, P.K.: Improved malware detection technique using ensemble based classifier and graph theory. In: 2015 IEEE International Conference on Computational Intelligence & Communication Technology (CICT), pp. 150–154. IEEE (2015)
5. Lin, C.T., Wang, N.J., Xiao, H., et al.: Feature selection and extraction for malware classification. J. Inf. Sci. Eng. 31(3), 965–992 (2015)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maleficent Neural Networks, the Embedding of Malware in Neural Networks: A Survey;IEEE Access;2024
2. Mitigating False Positive Static Analysis Warnings: Progress, Challenges, and Opportunities;IEEE Transactions on Software Engineering;2023-12
3. A comprehensive survey on deep learning based malware detection techniques;Computer Science Review;2023-02
4. Windows Malware Hunting with InceptionResNetv2 Assisted Malware Visualization Approach;Proceedings of International Conference on Computational Intelligence and Data Engineering;2023
5. Windows and IoT malware visualization and classification with deep CNN and Xception CNN using Markov images;Journal of Intelligent Information Systems;2022-08-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3