Classifying Fetal Health Using Neural Networks by Boosting Imbalanced Classes
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-99-3734-9_28
Reference22 articles.
1. Akbulut A, Ertugrul E, Topcu V (2018) Fetal health status prediction based on maternal clinical history using machine learning techniques. Comput Methods Programs Biomed 163:87–100
2. Miao JH, Miao KH (2018) Cardiotocographic diagnosis of fetal health based on multiclass morphologic pattern predictions using deep learning classification. Int J Adv Comput Sci Appl 9(5)
3. Zhao X, Zeng X, Koehl L, Tartare G, de Jonckheere J, Song K (2019) An IoT-based wearable system using accelerometers and machine learning for fetal movement monitoring. In: 2019 IEEE international conference on industrial cyber physical systems (ICPS). IEEE, pp 299–304
4. Wang G, Li W,. Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T et al (2018) Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 37(7):1562–1573
5. Li J, Liu X (2021) Fetal health classification based on machine learning. In: 2021 IEEE 2nd international conference on big data, artificial intelligence and internet of things engineering (ICBAIE). IEEE, pp 899–902
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3