Author:
Wu Ruoyu,Wu Zifan,Hu Xue,Zhang Lei
Publisher
Springer Nature Singapore
Reference32 articles.
1. Antonelli, M., et al.: The medical segmentation decathlon. Nature Commun. 13(1), 4128 (2022)
2. Bertels, J., et al.: Optimizing the Dice Score and Jaccard Index for medical image segmentation: theory and practice. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II, pp. 92–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_11
3. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9
4. Cardoso, M.J., et al.: Monai: An open-source framework for deep learning in healthcare. arXiv preprint arXiv:2211.02701 (2022)
5. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)