Author:
Wang Ying,Wang Kanqi,Lu Xiaowei,Zhao Yang,Liu Gang
Publisher
Springer Nature Singapore
Reference21 articles.
1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)
2. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops. ECCV 2022. LNCS, vol. 13803. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9
3. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
4. Lecture Notes in Computer Science;L-C Chen,2018
5. Chlebus, G., Meine, H., Moltz, J.H., Schenk, A.: Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering. arXiv preprint arXiv:1706.00842 (2017)