Author:
Zhang Mingkun,Xu Zhijun,Yang Qiuxia,Zhang Dongyu
Publisher
Springer Nature Singapore
Reference38 articles.
1. Alalwan, N., Abozeid, A., ElHabshy, A.A., Alzahrani, A.: Efficient 3D deep learning model for medical image semantic segmentation. Alexandria Eng. J. 60(1), 1231–1239 (2021)
2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016). arXiv preprint arXiv:1607.06450
3. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV 2022 Workshops. ECCV 2022. LNCS, vol. 13803. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9
4. Cardoso, M.J., et al.: MONAI: An open-source framework for deep learning in healthcare (2022). arXiv preprint arXiv:2211.02701
5. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation (2021). arXiv preprint arXiv:2102.04306