Publisher
Springer Nature Singapore
Reference36 articles.
1. Mordia, R., Verma, A.-K.:Visual techniques for defects detection in steel products: a comparative study. Eng. Fail. Anal. 106047 (2022)
2. Jin, Q., Chen, L.:A survey of surface defect detection of industrial products based on a small number of labeled data. arXiv preprint arXiv, 2203-05733 (2022)
3. Zheng, X., Zheng, S., Kong, Y., Chen, J.: Recent advances in surface defect inspection of industrial products using deep learning techniques. Int. J. Adv. Manuf. Technol. 113(1), 35–58 (2021)
4. Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C.-M., Dario, P.: Visual-based defect detection and classification approaches for industrial applications-a survey. Sensors 20(5), 1459 (2020)
5. Luo, Q., Fang, X., Su, J., Zhou, J., Zhou, B., Yang, C., Liu, L., Gui, W., Tian, L.: Automated visual defect classification for flat steel surface: a survey. IEEE Trans. Instrum. Meas. 69(12), 9329–9349 (2020)