Emotions During Covid-19: LSTM Models for Emotion Detection in Tweets
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-6407-6_13
Reference43 articles.
1. Kiritchenko S, Mohammad S, Salameh M (2016) Semeval-2016 task 7: determining sentiment intensity of English and Arabic phrases. In: Proceedings of the 10th international workshop on semantic evaluation (SEMEVAL-2016), pp 42–51
2. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing, vol 10, pp 79–86. Association for Computational Linguistics. https://arxiv.org/abs/cs/0205070
3. Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on association for computational linguistics, pp 271. Association for Computational Linguistics. https://arxiv.org/abs/cs/0409058
4. Ren Y, Wang R, Ji D (2016) A topic-enhanced word embedding for Twitter sentiment classification. Inf Sci 369:188–198. https://doi.org/10.1016/j.ins.2016.06.040
5. Ren Y, Zhang Y, Zhang M, Ji D (2016) Improving Twitter sentiment classification using topic-enriched multi-prototype word embeddings. In: AAAI, pp 3038–3044
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review;Multimedia Tools and Applications;2023-12-19
2. Detecting Fine-Grained Emotions from COVID-19 Tweets Using Transformer-Based Architecture;2023 IEEE 9th Information Technology International Seminar (ITIS);2023-10-18
3. Uni2Mul: A Conformer-Based Multimodal Emotion Classification Model by Considering Unimodal Expression Differences with Multi-Task Learning;Applied Sciences;2023-09-01
4. Actual rating calculation of the zoom cloud meetings app using user reviews on google play store with sentiment annotation of BERT and hybridization of RNN and LSTM;Expert Systems with Applications;2023-08
5. Sentiment analysis and emotion detection of post-COVID educational Tweets: Jordan case;Social Network Analysis and Mining;2023-03-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3