1. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907 (2016)
2. Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., Hu, X.: Towards deeper graph neural networks with differentiable group normalization. Adv. Neural. Inf. Process. Syst. 33, 4917–4928 (2020)
3. Jin, T., et al.: Deepwalk-aware graph convolutional networks. Sci. China Inf. Sci. 65(5), 152104 (2022)
4. Chang, L., Dan, G.: Encoding social information with graph convolutional networks forpolitical perspective detection in news media. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (2019)
5. Bai, T., Zhang, Y., Wu, B., Nie, J.-Y.: Temporal graph neural networks for social recommendation. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 898–903 (2020)