Author:
Venkata Abhishek Gullipalli,Sai Prathek Kotha,Durga Aryan Kosuri,Srinivas Gorla
Publisher
Springer Nature Singapore
Reference6 articles.
1. Majeed S, Mansoor Y, Qabil S, Majeed F, Khan B (2020) Comparative analysis of the denoising effect of unstructured vs. convolutional autoencoders. In: 2020 international conference on emerging trends in smart technologies (ICETST), Karachi, Pakistan, pp 1–5. https://doi.org/10.1109/ICETST49965.2020.9080731
2. Gondara K (2016) Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th international conference on data mining workshops (ICDMW), Barcelona, Spain, pp 241–246. https://doi.org/10.1109/ICDMW.2016.0041
3. Yasenko L, Klyatchenko Y, Tarasenko-Klyatchenko O (2020) Image noise reduction by denoising autoencoder. In: 2020 IEEE 11th international conference on dependable systems, services and technologies (DESSERT), Kyiv, Ukraine, pp 351–355. https://doi.org/10.1109/DESSERT50317.2020.9125027
4. Li D, Simske S, Mersereau RM (2007) Image denoising through support vector regression. In: 2007 IEEE International conference on image processing, San Antonio, TX, USA, pp IV425–IV428. https://doi.org/10.1109/ICIP.2007.4380045
5. Rao GA, Srinivas G, Rao KV, Reddy PP (2018) A partial ratio and ratio based fuzzy-wuzzy procedure for characteristic mining of mathematical formulas from documents. IJSC—ICTACT J Soft Comput 8(4):1728–1732