An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations
Author:
Wu Xinyuan,Wang Bin
Publisher
Springer Singapore
Reference44 articles.
1. Berti, M.: Nonlinear Oscillations of Hamiltonian PDEs. Springer, Berlin (2007) 2. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009) 3. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method. J. Comput. Phys. 231(20), 6770–6789 (2012) 4. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: a review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006) 5. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Annal. 100, 32–74 (1928); reprinted and translated. IBM J. Res. Dev. 11, 215–234 (1967)
|
|