Non-invasively Grading of Brain Tumor Through Noise Robust Textural and Intensity Based Features
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-13-9042-5_45
Reference12 articles.
1. Brain tumor research. https://www.braintumourresearch.org/ . Accessed 06 Aug 2018
2. Georgiadis, P., Cavourous, D., Kalatzis, I., Daskalakis, A., Kagadis, G.C., Sifaki, K., Malamas, M., Nikiforidis, G., Solomou, E.: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput. Methods Programs Biomed. 89(1), 24–32 (2008)
3. Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: Segmentation, feature extraction, and multiclass brain tumor classification. J. Digit. Imaging 26(6), 1141–1150 (2013)
4. Zarandi, M.F., Zarinbal, M., Izadi, M.: Systematic image processing for diagnosing brain tumors: a Type-II fuzzy expert system approach. Appl. Soft Comput. 11(1), 285–294 (2011)
5. Jyothi, G., Inbrani, H.: Hybrid tolerance rough set-firefly based supervised feature selection for MRI brain tumor image classification. Appl. Soft Comput. 46, 639–651 (2016)
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancements in brain tumor analysis: a comprehensive review of machine learning, hybrid deep learning, and transfer learning approaches for MRI-based classification and segmentation;Multimedia Tools and Applications;2024-09-12
2. Advanced AI-driven approach for enhanced brain tumor detection from MRI images utilizing EfficientNetB2 with equalization and homomorphic filtering;BMC Medical Informatics and Decision Making;2024-04-30
3. A Systematic Approach in Detecting Brain Tumor using CCNN Algorithm;2023 Third International Conference on Smart Technologies, Communication and Robotics (STCR);2023-12-09
4. A computer-aided diagnosis system for brain tumors based on artificial intelligence algorithms;Frontiers in Neuroscience;2023-07-07
5. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques;BMC Medical Informatics and Decision Making;2023-01-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3