Publisher
Springer Nature Singapore
Reference59 articles.
1. S. Ho, Y. Qu, L. Gao, J. Li, and Y. Xiang, Generative adversarial nets enhanced continual data release using differential privacy, in International Conference on Algorithms and Architectures for Parallel Processing. Springer, pp. 418–426 (2019)
2. G. Ács, L. Melis, C. Castelluccia, E.D. Cristofaro, Differentially private mixture of generative neural networks, in 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, pp. 715–720 (2017)
3. Q. Youyang, Z. Jingwen, L. Ruidong, Z. Xiaoning, Z. Xuemeng, Y. Shui, Generative adversarial networks enhanced location privacy in 5g networks. Sci China Inform Sci
4. Y. Qu, S. Yu, J. Zhang, H.T.T. Binh, L. Gao, W. Zhou, Gan-dp: generative adversarial net driven differentially privacy-preserving big data publishing, in ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 (2019)
5. Y. Qu, S. Yu, W. Zhou, Y. Tian, Gan-driven personalized spatial-temporal private data sharing in cyber-physical social systems. IEEE Transa. Netw. Sci. Eng. 7(4), 2576–2586 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献