Author:
Zhang Hanlin,Zhang Yue,He Wei,Xu Yonghui,Cui Lizhen
Publisher
Springer Nature Singapore
Reference42 articles.
1. Chen, C., et al.: Vertically federated graph neural network for privacy-preserving node classification. In: IJCAI, pp. 1959–1965. ijcai.org (2022)
2. Chen, F., Li, P., Miyazaki, T., Wu, C.: Fedgraph: federated graph learning with intelligent sampling. IEEE Trans. Parallel Distributed Syst. 33(8), 1775–1786 (2022)
3. Chen, J., Huang, G., Zheng, H., Yu, S., Jiang, W., Cui, C.: Graph-fraudster: adversarial attacks on graph neural network-based vertical federated learning. IEEE Trans. Comput. Soc. Syst. 10(2), 492–506 (2023)
4. Cheung, T.H., Dai, W., Li, S.: Fedsgc: federated simple graph convolution for node classification. In: IJCAI Workshops (2021)
5. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: WWW, pp. 2331–2341. ACM / IW3C2 (2020)