Abstract
AbstractPost-tensioned precast concrete walls are an attractive research trend in structural engineering, which replaces cast-in-place concrete walls in earthquake-prone buildings. Precast concrete walls use mild steel and high-strength post-tensioning steel for flexural resistance. Mild steel reinforcement yields in tension and compression, dissipating inelastic energy. Unbounded tendons are used inside the wall to give self-centering capability, which lowers residual displacements. At the wall-foundation, horizontal slots are installed equally. Meanwhile, the middle-wall concrete is still anchored to the base. A three-dimensional finite element (FE) model is developed in this study to assess the lateral load response of shear walls with horizontal bottom slots. The seismic performance of three distinct walls is evaluated using the Abaqus software FEA. The model is validated by comparing the experimental data accessible in the literature. Furthermore, we investigate the effects of bottom slit length, steel strand position, initial prestressing level, and concrete strength. All of these criteria are critical for constructing structures with the new concept. The results of this study show that the three-dimensional finite element model accurately predicts all of the above-mentioned properties, including the lateral force–displacement response and toe area damage of self-centering shear walls.
Publisher
Springer Nature Singapore
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献