Author:
Mo Di,Huang Bangrui,Wang Haitao,Cao Xinyu,Weng Heng,Hao Tianyong
Publisher
Springer Nature Singapore
Reference27 articles.
1. Hao, T., We, Y., Qiang, J., Wang, H., Lee, K.: The representation and extraction of quantitative information. In: Proceedings of the 13th Joint ISO-ACL Workshop on Interoperable Semantic Annotation (ISA-13) (2017)
2. Maguire, A., Johnson, M.E., Denning, D.W., Ferreira, G.L.C., Cassidy, A.: Identifying rare diseases using electronic medical records: the example of allergic bronchopulmonary aspergillosis. Pharmacoepidemiol. Drug Saf. 26(7), 785–791 (2017)
3. Frost, D.W., Vembu, S., Wang, J., Tu, K., Morris, Q., Abrams, H.B.: Using the electronic medical record to identify patients at high risk for frequent emergency department visits and high system costs. Am. J. Med. 130(5), 601-e17 (2017)
4. Lossio-Ventura, J.A., et al.: Towards an obesity-cancer knowledge base: Biomedical entity identification and relation detection. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1081–1088 (2016)
5. Liu, S., Nie, W., Gao, D., Yang, H., Yan, J., Hao, T.: Clinical quantitative information recognition and entity-quantity association from Chinese electronic medical records. Int. J. Mach. Learn. Cybern. 12(1), 117–130 (2020). https://doi.org/10.1007/s13042-020-01160-0