Publisher
Springer Nature Singapore
Reference11 articles.
1. Nguyen LAT, Ha TX (2022) A novel approach of traffic density estimation using CNNs and computer vision. European J Electr Eng Comput Sci 5(4):80–84
2. Pang CCC, Lam WWL, Yung NHC (2007) A method for vehicle count in the presence of multiple-vehicle occlusions in traffic images. IEEE Trans Intell Transp Syst 8(3):441–459
3. Kapse SA, Bhoyar RA, Dhokne CN (2016) Classification of traffic density using three class neural network classifiers. Int J Eng Res Technol (IJERT), ISSN, 2278–0181
4. Nubert J, Truong NG, Lim A, Tanujaya HI, Lim L, Vu MA (2018) Traffic density estimation using a convolutional neural network. arXiv preprint arXiv:1809.01564
5. Shipu MK, Mamun FA, Razu SH, Nishat Sultana M (2022) TrafficNN: CNN-based road traffic conditions classification. In: Soft computing for security applications, pp 241–253, Springer, Singapore
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Three-Tier Survey of Deep Learning Based Traffic Prediction Schemes;2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2024-03-14