Author:
Akshaya V.,Sathyapriya M.,Ranjini Devi R.,Sivanantham S.
Publisher
Springer Nature Singapore
Reference16 articles.
1. Zhang, X., Han, Y., Xu, W., Wang, Q.: HOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architecture. Inf. Sci. May 2019. Accessed: 8 Jan (2019)
2. N. Carneiro, G. Figueira, and M. Costa : A data mining based system for credit-card fraud detection in e-tail. J. Decis. Support. Syst. 95, 91101 (Mar 2017)
3. Lebichot, B., Le Borgne, Y.-A., HeGuelton, L., Oblé, F., Bontempi, G.: Deeplearning domain adaptation techniques for credit cards fraud detection. In: Proceeding INNS Big Data Deep Learn, The conference, Genoa, Italy, pp. 7888–7900, (2019)
4. John, H., Naaz, S.: Credit card fraud detection using local outlier factor and isolation forest. Int. J. Comput. Sci. Eng. 7(4), 1060–1064 (2019)
5. Adewumi, A.O., Akinyelu, A.A.: A survey of machine-learning and nature-inspired based credit card fraud detection techniques. Int. J. Syst. Assur. Eng. Manag. 8, 937–953 (2017)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献