Prognosis of Concrete Strength: The State of Art in Using Different Machine Learning Algorithms

Author:

Basnet GauravORCID,Lamichhane AashishORCID,Panta AmritORCID,Sapkota Sanjog ChhetriORCID,Kumar NishantORCID

Publisher

Springer Nature Singapore

Reference23 articles.

1. Güçlüer K et al (2021) A comparative investigation using machine learning methods for concrete compressive strength estimation. Mater Today Commun 27:1–8

2. Chakraborty D et al (2021) An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete. Res Eng 11:10–19

3. Nguyen H et al (2021) Efficient machine learning models for prediction of concrete strengths. Constr Build Mater 266(B):120–131

4. Rizvon S et al (2021) Machine learning techniques for recycled aggregate concrete strength prediction and its characteristics between the hardened features of concrete. Arab J Geosci 14(21):3–12

5. Asteris P et al (2021) Prediction of cement-based mortars compressive strength using machine learning techniques, 33(19). Springer London

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3