Hardware Trojan Detection Using Machine Learning Technique
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-15-7234-0_37
Reference18 articles.
1. Zhang J, Yuan F, Xu Q (2014) DeTrust: defeating hardware trust verification with stealthy implicitly-triggered hardware trojans. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, pp 153–166
2. Waksman A, Suozzo M, Sethumadhavan S (2013) FANCI: identification of stealthy malicious logic using boolean functional analysis. In: Proceedings of the ACM conference on computer and communications security, pp 697–708. https://doi.org/10.1145/2508859.2516654
3. Moein S, Gulliver TA, Gebali F, Alkandari A (2016) A new characterization of hardware trojans. IEEE Access 4:2721–2731
4. Moein S, Khan S, Gulliver TA, Gebali F, El-Kharashi MW (2015) An attribute based classification of hardware trojans. In: 2015 tenth international conference on computer engineering & systems (ICCES), Cairo, pp 351–356
5. Salmani H, Tehranipoor M, Karri R (2013) On design vulnerability analysis and trust benchmarks development. In: 2013 IEEE 31st international conference on computer design (ICCD), Asheville, NC, pp 471–474
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning–Based Hardware Trojans Detection in Integrated Circuits: A Systematic Review;Lecture Notes in Networks and Systems;2024
2. Using Path Features for Hardware Trojan Detection Based on Machine Learning Techniques;2023 24th International Symposium on Quality Electronic Design (ISQED);2023-04-05
3. Securing IoT Chips from Hardware Trojan using Machine Learning Classifiers;2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET);2022-09-22
4. Feature‐based augmentation and classification for tabular data;CAAI Transactions on Intelligence Technology;2022-07-24
5. Hardware-Assisted Machine Learning in Resource-Constrained IoT Environments for Security: Review and Future Prospective;IEEE Access;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3