1. J. Bollen, H. Mao, A. Pepe, Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena, in Fifth International AAAI Conference on Weblogs and Social Media (2011)
2. D. Borth, T. Chen, R. Ji, S.F. Chang, Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content, in Proceedings of the 21st ACM International Conference on Multimedia (2013), pp. 459–460
3. D. Borth, R. Ji, T. Chen, T. Breuel, S.F. Chang, Large-scale visual sentiment ontology and detectors using adjective noun pairs, in Proceedings of the 21st ACM International Conference on Multimedia (2013), pp. 223–232
4. V. Campos, B. Jou, X. Giro-i Nieto, From pixels to sentiment: Fine-tuning CNNS for visual sentiment prediction. Image Vision Comput. 65, 15–22 (2017)
5. H. Cao, S. Bernard, L. Heutte, R. Sabourin, Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images, in International Conference Image Analysis and Recognition (Springer, Berlin, 2018)