Author:
Cheng Haonan,Yu Haixin,Fang Li,Ye Long
Publisher
Springer Nature Singapore
Reference30 articles.
1. Agarwal, S., Farid, H., Fried, O., Agrawala, M.: Detecting deep-fake videos from phoneme-viseme mismatches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2814–2822 (2020)
2. Bagchi, A., Mahmood, J., Fernandes, D., Sarvadevabhatla, R.K.: Hear me out: Fusional approaches for audio augmented temporal action localization. arXiv preprint arXiv:2106.14118 (2021)
3. Cai, Z., Ghosh, S., Gedeon, T., Dhall, A., Stefanov, K., Hayat, M.: “glitch in the matrix!”: A large scale benchmark for content driven audio-visual forgery detection and localization. arXiv preprint arXiv:2305.01979 (2023)
4. Cai, Z., Stefanov, K., Dhall, A., Hayat, M.: Do you really mean that? content driven audio-visual deepfake dataset and multimodal method for temporal forgery localization. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–10 (2022)
5. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. Advances in neural information processing systems 32 (2019)