Publisher
Springer Nature Singapore
Reference13 articles.
1. Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process. Lett. 22(7), 838–842 (2015)
2. Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2017)
3. Golestaneh, S.A., Dadsetan, S., Kitani, K.M.: No-reference image quality assessment via transformers, relative ranking, and self-consistency. In: 2022 IEEE/CVF winter conference on applications of computer vision, WACV 2022, pp. 3989–3999. IEEE, Waikoloa, HI, USA (2022)
4. Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Yanning Zhang, Y.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 3667–3676. IEEE, Seattle, WA, USA (2020)
5. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a ‘Completely blind’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)