Publisher
Springer Nature Singapore
Reference23 articles.
1. Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195. https://doi.org/10.1016/j.jhydrol.2015.04.073
2. Adamala S, Raghuwanshi NS, Mishra A, Tiwari MK (2013) Evapotranspiration modelling using second-order neural networks. J Hydrol Eng 19(6):1131–1140. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000887
3. Afzaal H, Farooque AA, Abbas F, Acharya B, Esau T (2020) Computation of evapotranspiration with artificial intelligence for precision water resource management. Appl Sci. https://doi.org/10.3390/app10051621
4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO Rome 300(9):D05109
5. Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. USDA Soil Cons Serv SCS-TP96, p 44. Washington D.C.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献