1. Bharti, S.K., Vachha, B., Pradhan, R.K., Babu, K.S., Jena, S.K.: Sarcastic sentiment detection in tweets streamed in real time: a big data approach. Digital Communications and Networks 2(3), 108–121 (2016)
2. Peng, C.-C., Lakis, M., Pan, J.W.: Detecting Sarcasm in Text: An Obvious Solution to a Trivial Problem (2015)
3. Dmitry, D., Tsur, O., Rappoport, A.: Semi-supervised recognition of sarcastic sentences in twitter and amazon. In: Proceedings of the fourteenth conference on computational natural language learning, pp. 107–116. Association for Computational Linguistics (2010)
4. Ellen, R., Qadir, A., Surve, P., De Silva, L., Gilbert, N., Huang, R.: Sarcasm as contrast between a positive sentiment and negative situation. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 704–714 (2013)
5. Pandey, A.C., Pal, R., Kulhari, A.: Unsupervised data classification using improved biogeography based optimization. Int. J. Syst. Assur. Eng. Manag. 1–9