Publisher
Springer Nature Singapore
Reference92 articles.
1. Jarrett D, Stride E, Vallis K, Gooding MJ. Applications and limitations of machine learning in radiation oncology. Br J Radiol. 2019;92:1–12. https://doi.org/10.1259/bjr.20190001.
2. El Naqa I, Ruan D, Valdes G, Dekker A, McNutt T, Ge Y, et al. Machine learning and modeling: data, validation, communication challenges. Med Phys. 2018;45:e834–40. https://doi.org/10.1002/mp.12811.
3. Feng M, Valdes G, Dixit N, Solberg TD. Machine learning in radiation oncology: opportunities, requirements, and needs. Front Oncol. 2018;8:1–7. https://doi.org/10.3389/fonc.2018.00110.
4. Artificial Intelligence in Healthcare Market by Offering, Technology, End-Use Application, End User And Geography—Global Forecast to 2025. https://www.reportlinker.com/p04897122/Artificial-Intelligence-in-Healthcare-Market-by-Offering-Technology-Application-End-User-Industry-and-Geography-Global-Forecast-to.html.
5. Jia X, Ziegenhein P, Jiang SB. GPU-based high-performance computing for radiation therapy. Phys Med Biol. 2014;59(4):R151–82. https://doi.org/10.1088/0031-9155/59/4/R151.