Using Evidence Accumulation-Based Clustering and Symbolic Transformation to Group Multiple Buildings Based on Electricity Usage Patterns
Author:
Li KehuaORCID, Ma ZhenjunORCID, Robinson DuaneORCID, Ma JunORCID
Publisher
Springer Singapore
Reference16 articles.
1. Chicco, G.: Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1), 68–80 (2012) 2. Park, J.Y., Yang, X., Miller, C., Arjunan, P., Nagy, Z.: Apples or oranges? Identification of fundamental load shape profiles for benchmarking buildings using a large and diverse dataset. Appl. Energy 236, 1280–1295 (2019) 3. Tardioli, G., Kerrigan, R., Oates, M., O’Donnell, J., Finn, D.P.: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Energy Build. 140, 90–106 (2018) 4. Gianniou, P., Liu, X., Heller, A., Nielsen, P.S., Rode, C.: Clustering-based analysis for residential district heating data. Energy Convers. Manag. 165, 840–850 (2018) 5. Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., Han, M., Zhao, X.: A review of data-driven approaches for prediction and classification of building energy consumption. Renew. Sustain. Energy Rev. 82, 1027–1047 (2018)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|