Author:
Thakar Chetan M.,Ventayen Randy Joy Magno,Ramirez-Asis Edwin Hernan,Vilchez-Carcamo Juan Emilio,Maguiña-Palma Misael Erikson,Thommandru Abhishek
Publisher
Springer Nature Singapore
Reference17 articles.
1. Li, H.: Machine-learning based modelling for AM processes. In: 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), pp. 02SAMA21-1–02SAMA21-4 (2020). https://doi.org/10.1109/NAP51477.2020.9309628
2. Li, Y., Yan, H., Zhang, Y.: A deep learning method for material performance recognition in laser additive manufacturing. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), pp. 1735–1740 (2019). https://doi.org/10.1109/INDIN41052.2019.8972334
3. Han, F., Liu, S., Liu, S., Zou, J., Ai, Y., Xu, C.: Defect detection: defect classification and localization for additive manufacturing using deep learning method. In: 2020 21st International Conference on Electronic Packaging Technology (ICEPT), pp. 1–4 (2020). https://doi.org/10.1109/ICEPT50128.2020.9202566
4. Mashhadi, F., Salinas Monroy, S.A.: Deep learning for optimal resource allocation in IoT-enabled additive manufacturing. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6 (2020). https://doi.org/10.1109/WF-IoT48130.2020.9221038
5. Nandhitha, N.M., Manoharan, N., Rani, B.S., Venkatraman, B., Kalyanasundaram, P., Raj, B.: Comparative study on the suitability of feature extraction techniques for tungsten inclusion and hotspot detection from weld thermo-graphs for online weld monitoring. Indian J. Eng. Mater. Sci. 17(1), 20–26