1. Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I.: Predicting elections with twitter: What 140 characters reveal about political sentiment. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pp. 178–185 (2010). http://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852
2. Bermingham, A., Smeaton, A.F.: On using twitter to monitor political sentiment and predict election results. Psychology 2–10 (2011)
3. Jungherr, A., Jürgens, P., Schoen, H.: Why the pirate party won the German election of 2009 or the trouble with predictions: a response to Tumasjan, A., Sprenger, t. O., Sander, P. G., & Welpe, I. M. “predicting elections with twitter: What 140 characters reveal about political sentiment”. Social Science Computer Review 30 (2), 229–234 (2012). http://journals.sagepub.com/doi/https://doi.org/10.1177/0894439311404119
4. Martínez-Cámara, E., Martín-Valdivia, M., Ureña-López, L., Montejo-Ráez, A.: Sentiment analysis in Twitter. Natural Language Eng. 20(1), 1–28 (2014). https://doi.org/10.1017/S1351324912000332
5. Harjule, P., Gurjar, A., Seth, H., Thakur, P.: Text Classification on Twitter Data, pp. 160–164 (2020). https://doi.org/10.1109/ICETCE48199.2020.9091774