Publisher
Springer Nature Singapore
Reference36 articles.
1. Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto KI (2007) The Effects of Over and Under Sampling on Fault-prone Module Detection. In: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, pp 196–204. https://doi.org/10.1109/ESEM.2007.28
2. Nickerson A, Japkowicz N, Milios EE (2001) Using Unsupervised Learning to Guide Resampling in Imbalanced Data Sets. In: Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics. http://www.gatsby.ucl.ac.uk/aistats/aistats2001/files/nickerson155.ps
3. Chawla NV (2010) Data Mining for Imbalanced Datasets: An Overview. In: Proceedings of the Data Mining and Knowledge Discovery Handbook, pp 875–886. https://doi.org/10.1007/978-0-387-09823-4_45
4. Kamei Y, Matsumoto S, Monden A, Matsumoto K, Adams B, Hassan AE (2010) Revisiting common bug prediction findings using effort-aware models. In: Proceedings of the 26th IEEE International Conference on Software Maintenance, pp 1–10. https://doi.org/10.1109/ICSM.2010.5609530
5. Elish KO, Elish MO (2008) Predicting defect-prone software modules using support vector machines. J Syst Softw 81(5):649–660. https://doi.org/10.1016/j.jss.2007.07.040