Author:
Abujadallah Mahmoud S.,Abudalfa Shadi I.
Publisher
Springer Nature Singapore
Reference17 articles.
1. Abudalfa, S., Al-Mouhamed, M., & Ahmed, M. (2019). Comparative study on behavior-based dynamic branch prediction using machine learning. International Journal of Computing and Digital Systems, 8(01), 33–41.
2. Abudalfa, S., & Salem, M. (2022). An analysis of course evaluation questionnaire on UCAS students’ academic performance by using data clustering. In Explore business, technology opportunities and challenges after the Covid-19 pandemic (pp. 231–240). Springer International Publishing.
3. Aljohani, N. R., Fayoumi, A., & Hassan, S. U. (2019). Predicting at-risk students using clickstream data in the virtual learning environment. Sustainability (Switzerland), 11(24), 1–12. https://doi.org/10.3390/su11247238
4. Boroujeni, M. S., & Dillenbourg, P. (2019). Discovery and temporal analysis of MOOC study patterns. Journal of Learning Analytics, 6(1), 16–33. https://doi.org/10.18608/jla.2019.61.2
5. Chui, K. T., et al. (2017). Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 107, 105584. https://doi.org/10.1016/j.chb.2018.06.032