Investigation on Oscillator-Based Ising Machines

Author:

Shirasaka Sho

Abstract

AbstractMoore’s law is slowing down and, as traditional von Neumann computers face challenges in efficiently handling increasingly important issues in a modern information society, there is a growing desire to find alternative computing and device technologies. Ising machines are non-von Neumann computing systems designed to solve combinatorial optimization problems. To explore their efficient implementation, Ising machines have been developed using a variety of physical principles such as optics, electronics, and quantum mechanics. Among them, oscillator-based Ising machines (OIMs) utilize synchronization dynamics of network-coupled spontaneous nonlinear oscillators. In these OIMs, phases of the oscillators undergo binarization through second-harmonic injection signals, which effectively transform the broad class of network-coupled oscillator systems into Ising machines. This makes their implementation versatile across a wide variety of physical phenomena. In this Chapter, we discuss the fundamentals and working mechanisms of the OIMs. We also numerically investigate the relationship between their performance and their properties, including some unexplored effects regarding driving stochastic process and higher harmonics, which have not been addressed in the existing literature.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3