Spatial Photonic Ising Machine with Time/Space Division Multiplexing

Author:

Ogura Yusuke

Abstract

AbstractThe spatial photonic Ising machine (SPIM) is an unconventional computing architecture based on parallel propagation/processing with spatial light modulation. SPIM enables the handling of an Ising model using light as a pseudospin. This chapter presents SPIMs with multiplexing to enhance their functionality. Handling a fully connected Ising model with a rank-2 or higher spin-interaction matrix becomes possible with multiplexing, drastically improving its applicability in practical applications. We constructed and examined systems based on time- and space-division multiplexing to handle Ising models with ranks of no less than one while maintaining high scalability owing to the features of spatial light modulation. Experimental results with knapsack problems demonstrate that these methods can compute the Hamiltonian consisting of objective and constraint terms, which require multiplexing, and can determine the ground-state spin configuration. In particular, in space-division multiplexing SPIM, the characteristics of the solution search vary based on the physical parameters of the optical system. A numerical study also suggested the effectiveness of the dynamic parameter settings in improving the Ising machine performance. These results demonstrate the high capability of SPIMs with multiplexing.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3